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We consider disordered ladders of the transverse-field Ising model and study their critical properties and
entanglement entropy for varying width, w =20, by numerical application of the strong disorder renormaliza-
tion group method. We demonstrate that the critical properties of the ladders for any finite w are controlled by
the infinite disorder fixed point of the random chain and the correction to scaling exponents contain informa-
tion about the two-dimensional model. We calculate sample dependent pseudocritical points and study the shift
of the mean values as well as scaling of the width of the distributions and show that both are characterized by
the same exponent, »(2d). We also study scaling of the critical magnetization, investigate critical dynamical
scaling as well as the behavior of the critical entanglement entropy. Analyzing the w dependence of the results
we have obtained accurate estimates for the critical exponents of the two-dimensional model: v(2d)=1.25(8),

x(2d)=0.996(15), and (2d)=0.51(3).
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I. INTRODUCTION

In nature, there are materials, which are in a way between
two integer dimensions, such as they are built from
(d—1)-dimensional layers having a finite width, w. Examples
are thin films,! magnetic multilayers,? or ladders of quantum
spins.® One interesting question for such multilayer systems
is the properties of critical fluctuations, when the linear ex-
tent of the layers, L, goes to infinity. If the system is classical
having thermal fluctuations, finite-size scaling theory*> can
be applied. One basic observation of this theory is that for
any finite w the critical behavior is controlled by the fixed
point of the (d—1)-dimensional system, but the scaling func-
tions in terms of the variable, w/L, involve also the critical
exponents of the d-dimensional system. For example the
critical points, 7.(w), measured at a finite width, w, approach
the true d-dimensional critical point, T,=T,.(«), as

Te=To(w) ~w'l, (1)

where the shift exponent, v,, generally corresponds to the
correlation-length exponent, v, in the d-dimensional system.

In a quantum system having a quantum critical point at
zero temperature, 7=0, by varying a control parameter, 6,
the dimensional cross over is a more subtle problem. If the
d-dimensional critical quantum system is isomorphic with a
(d+1)-dimensional classical system,® then results of finite-
size scaling can be transferred to the quantum system, too.
This is the case, e.g., for the quantum critical point of the
d-dimensional transverse-field Ising model, which is equiva-
lent to the critical point of the classical (d+ 1)-dimensional
Ising model. However, the situation is more complicated for
antiferromagnetic models with continuous symmetry, such as
for Heisenberg antiferromagnetic spin ladders. In this case,
the form of low-energy excitations could sensitively depend
on the value of w: if the ladder contains even number of legs
there is a gap, whereas for odd number of legs the system is
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gapless.? In the following for quantum systems, we restrict
ourselves to models with a discrete symmetry, such as to the
transverse-field Ising model.

In disordered systems, in which besides deterministic
(thermal or quantum) fluctuations there are also disorder
fluctuations in a sample of finite width one can define and
measure a sample-dependent pseudocritical point, T.(w) [or
6.(w)], and study its distribution.” In particular, one concerns
the shift of the mean value, T,.(w), and the scaling of the
width of the distribution, AT,.(w). In this case besides the
shift exponent, v,, which is defined analogously to Eq. (1)
one should determine the width exponent, v, too, which is
defined by the scaling relation:

AT (w) ~ w7, (2)

According to renormalization group (RG) theory,? the finite-
size scaling behavior of random classical systems depends
on the relevance or irrelevance of the disorder.” If the disor-
der represents an irrelevant perturbation at the pure system’s
fixed point, which happens if the correlation length exponent
in the pure system satisfies v,>2/d, than for the disordered
system we have v;=v, and v,,=2/d and the thermodynamic
quantities at the fixed point are self-averaging. On the con-
trary for relevant disorder, which happens for v,<2/d, there
is a new conventional random fixed point with a correlation-
length exponent, v=2/d,'° and we have v,;=v,=v. In this
fixed point, there is a lack of self-averaging. These predic-
tions, which have been debated for some time,'! were
checked later for various models.”312-14

For quantum systems quenched disorder is perfectly cor-
related in the (imaginary) time direction, therefore, generally
it has a more profound effect at a quantum critical point.'> In
some cases the critical properties of the random model are
controlled by a so called infinite disorder fixed point,'® in
which the disorder fluctuations play a completely dominant
role over quantum fluctuations. This happens, among others
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for the random transverse-field Ising model, as shown by
analytical results'® in one dimension (1d) and numerical
results'”?" in two dimension (2d). Finite-size scaling has
been tested for the 1d model and a new scenario is
observed.?! The finite-size transition points, denoted by 6,(L)
in a system of length, L, are shown to be characterized by
two different exponents, v;<v,. This means, that asymptoti-
cally A6.(L)/[0.()—6.(L)]— <0, which is just the opposite
limit as known for irrelevant disorder.

In the present paper, we go to the two-dimensional prob-
lem and study the finite-size scaling properties of ladders of
random transverse-field Ising models. For this investigations
we use a numerical implementation of the so called strong
disorder renormalization group (SDRG) method.?? As in 24,
this method is expected to be asymptotically exact in large
scales. In the numerical implementation of the method, we
have used efficient computer algorithms and in this way we
could treat ladders with a large number of sites: we went up
to lengths L=4096 for w=20 legs and used 4 X 10* random
samples. Our aim with these investigations is threefold. First,
we want to clarify the form of finite-size scaling valid for
this random quantum model. Second, using the appropriate
form of the scaling Ansatz we want to calculate estimates for
the critical exponents of the 2d model. Previous
studies'’2%23 in this respect have quite large error bars and
we want to increase the accuracy of the estimates consider-
ably. Our third aim is to calculate also the entanglement
entropy?* in the ladder geometry and study its cross-over
behavior between one? and two dimensions.?®?’

The structure of the rest of the paper is the following. The
model and the method of the calculation is presented in Sec.
II. In Sec. III, finite-size transition points are calculated and
their distribution (shift and width) is analyzed. In Sec. IV, we
present calculations at the critical point about the magnetiza-
tion and the dynamical scaling behavior. Results about the
entanglement entropy are presented in Sec. V. Our paper is
closed by a discussion.

II. MODEL AND METHOD
A. Random transverse-field Ising ladder

We consider the random transverse-field Ising model in a
ladder geometry in which the sites, i and j, are taken from a
strip of the square lattice of length, L, and width, w. We use
periodic boundary conditions in both directions. The model
is defined by the Hamiltonian:

H=—2Ji10?0§—2h5077 3)
(if) i

in terms of the Pauli-matrices, 7. Here, the first sum runs
over nearest-neighbor sites and the J;; couplings and the A;
transverse fields are independent random numbers, which are
taken from the distributions, p(J) and g(h), respectively. For
concreteness we use boxlike distributions: p(J)=1, for
0<J=1 and p(J)=0, for J>1; g(h)=1/hy, for 0<h=h,
and g(h)=0, for h>h,. We consider the system at 7=0 and

use f=In hy as the quantum control parameter.
In the thermodynamic limit, L— o, the system in Eq. (3)
displays a paramagnetic phase, for 6> 6.(w), and a ferro-
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magnetic phase, for < 6,(w). In between there is a random
quantum critical point at 6= 6.(w) and we are going to study
its properties for various widths, w.

B. Strong disorder renormalization group method

The model is studied by the strong disorder renormaliza-
tion group method,??> which has been introduced by Ma, Das-
gupta, and Hu?® and later developed by D. Fisher'® and oth-
ers. In this method, the largest local term in the Hamiltonian
(either a coupling or a transverse field) is successively elimi-
nated and at the same time new terms are generated between
remaining sites. If the largest term is a coupling, say J;;
=() connecting sites 2 and 3, ({) being the energy scale at the
given RG step), then after renormalization the two sites form
a spin cluster with an effective moment i, 3= u,+ 3, where
in the starting situation each spin has unit moment, wu;=1.
The spin cluster is put in an effective transverse field of

strength: Ez,3zh2h3/12,3, which is obtained in second-order
perturbation calculation. On the other hand, if the largest
local term is a transverse field, say h,=(), then site 2 is
eliminated and new couplings are generated between each
pairs of spins, which are nearest neighbors to 2. If say k and
[ are nearest-neighbor spins to 2, than the new coupling con-
necting them is given by: jk,,xJz,kJZ,,/hz, also in second-
order perturbation calculation. If the sites k and / are already
connected by a coupling, J;;# 0, than for the renormalized

coupling we take max[]k’,,jk’,]. This last step is justified if
the renormalized couplings have a very broad distribution,
which is indeed the case at infinite disorder fixed points. The
renormalization is repeated: at each step one more site is
eliminated and the energy scale is continuously lowered. For
a finite system the renormalization is stopped at the last site,
where we keep the energy scale, ()%, and the total moment,
u”, as well as the structure of the clusters.

C. Known exact results in the chain geometry

The renormalization has special characters in the chain
geometry, i.e., with w=1. In this case the topology of the
system stays invariant under renormalization and the cou-
plings and the transverse fields are dual variables. From this
follows that at the quantum critical point the couplings and
the transverse fields are decimated symmetrically, thus the
critical point is located at 6.(1)=0.? The RG equations for
the distribution function of the couplings and that of the
transverse fields can be written in closed form as an integro-
differential equation, which has been solved analytically both
at the critical point'® and in the off-critical region, in the
so-called Grifﬁths—phase.30 Here, we list the main results.

The energy-scale, (), and the length-scale, L, are related
as:

In(Qy/Q) ~ LY, (4)

with an exponent: ¥(1d)=1/2. (Here, L can be the size of a
finite system and () is a reference energy scale.) The aver-
age spin-spin correlation function is defined as G(r)
=[{o70?, )]sy, Where (...) denotes the ground-state average
and [...],, stands for the averaging over quenched disorder.
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In the vicinity of the critical point G(r) has an exponential
decay:

G(r) ~ exp(=r/§), (5)

in which the correlation length, &, is divergent at the critical
point as:

£~ 10-0.7, (6)

with v(1d)=2. At the critical point the average correlations
have a power-law decay:

Gr)~r>, 0=6, (7)
with a decay exponent:
x(1d) = (3 =5)/4. (8)

The average cluster moment, w, is related to the energy-
scale, () as:

p~ [In(Qy Q)] 9)

with ¢(1d)=(1 +\J’g)/2. The average cluster moment can be
expressed also with the size as u~ L%, where the fractal
dimension of the cluster is expressed by the other exponents
as:

dy=dp=d-x, (10)
with d=1.

III. FINITE-SIZE CRITICAL POINTS
A. Results in the chain geometry

In the chain geometry finite-size critical points are studied
in Ref. 21, in which they are located by different methods,
which all are based on the free-fermion mapping of the
problem.?! The finite-size critical points are shown to satisfy
the microcanonical condition:

L L
S nJ;=>1Inh, (11)
i=1 i=1

from which follows that the distribution of 6,(L) is Gaussian
with zero mean and with a mean deviation of A6.(L)
~ L™"2. Consequently the width-exponent of the distribution
is given by:

v, =v(ld)=2. (12)
On the other hand the shift exponent is given by:
v,=1, (13)

although in some cases (c.f. for periodic boundary condi-
tions) the prefactor of the scaling function can be vanishing.

B. Doubling method

In the ladder geometry, i.e., for w=2, the free-fermionic
mapping is no longer valid, therefore new methods have to
be utilized to locate pseudocritical points. Here, we used the
doubling method combined with the strong disorder renor-
malization group.
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FIG. 1. (Color online) SDRG results for the total magnetic mo-
ments, u(2a) and u(a@), as well as for the log-gaps, —log Q(2a)
and —log Q(a), as a function of the control parameter, 6, for a given
realization (@) of a w=2-leg L=128 ladder and its double (2a), see
text. Upper inset: ratio of the magnetizations, r,,, and that of the
gaps, rq, as a function of # (log-lin scale) in the vicinity of the
finite-size transition points. The finite-size critical point for r,, is
given at the jump, for rq it is located where ro=1/2. Lower inset:
Ratio of the two pseudocritical points, 7= 029)/ 62’”) as a function of
H(Cm) for the w=10 leg ladder for various lengths and for 500
realizations.

In the doubling procedure,'* we start with a given random
sample (@) of length L and width w and construct a repli-
cated sample (2a) of length 2L and width w by gluing two
copies of (a) together. We compare the magnetizations of the
samples, m(a,L,w) and m(2a,2L,w), respectively, which
are calculated by the strong disorder renormalization group
method. To locate the pseudocritical point of the sample we
form the ratio of the magnetizations: r,(a,L,w)
=mQ2a,2L,w)/m(a,L,w). In Fig. 1, we illustrate the 6 de-
pendence of the total magnetic moments, w(2a,2L,w) and
ula,L,w), for a given sample of a w=2-leg L=128 ladder.
The corresponding ratio of the magnetizations, r,,(a,L,w), is
shown in the upper inset of this figure. It is seen, that in the
ordered phase: 6<6.a,L,w) this ratio approaches
rm(a,L,w)— 1. On the other hand in the disordered phase:
0> 60.(a,L,w) the magnetizations approach their minimal
values, which in the SDRG method can be 1/2L and 1/L,
respectively, since the minimal value of the magnetic mo-
ment is 1. Consequently in this phase we have r,(a,L,w)
— 1/2. In between there is a sudden change in the value of
this ratio, which can be used to define a sample-dependent
pseudocritical point, 6.(a,L,w).

There is another possibility, if we consider the ratio of the
two gaps: ro(a,L,w)=QQa,2L,w)/Q(a,L,w), which are
also calculated by the strong disorder renormalization group
method. In Fig. 1 we show the two log-gaps,
—log Q(2a,2L,w) and —log Q(a,L,w), for the same sample
as before and the corresponding ratio, ro(a,L,w), is put in
the upper inset of this figure. It is seen that this ratio in the
ordered phase, 6<6,(a,L,w), approaches rqo(a,L,w)—0
and in the disordered phase: 6> 6.(a,L,w), goes to
ro(a,L,w)— 1. In between this ratio has a quick variation
and we can fix the point where ro(a,L,w)=1/2 to define a
sample-dependent pseudocritical point, 6.(a,L,w).
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FIG. 2. (Color online) Distribution of the pseudocritical points,
6., for the w=10 leg ladder for various lengths and for 10* realiza-
tions. In the inset in a log-lin plot deviations from the Gaussian
distributions are seen, which however are decreasing with increas-
ing L.

C. Numerical results
1. Comparison of the two definitions

In the doubling method we have calculated pseudocritical
points by using both ratios. We have observed, that for a
given sample 020) calculated from the ratio of the gaps is
always somewhat smaller, than eg"”, which is obtained from
the ratio of the magnetizations. This is illustrated in the up-
per inset of Fig. 1 for a given sample. We have also calcu-
lated for several realizations the ratio of the two pseudocriti-
cal points, Hﬁm/ 0(6”0, which is shown in the lower inset of
Fig. 1 as a function of 6™ for the w=10 leg ladder for
various lengths, L=32,64 and 128. The relative difference
between the two pseudocritical points is indeed vary small, it
is of the order of 10~ and this is decreasing with increasing
L and w. In the following, we restrict ourselves to those
pseudocritical points, which are calculated from the ratio of
the magnetization and which have a relative precision of
107 for each sample.

2. Distribution of finite-size critical points

We have calculated the distribution of pseudocritical
points for ladders with a fixed number of legs, 1 =w =20,
for varying lengths, L=2! with [=5,6,...,10. Indeed, for
the largest values of L the relation, w/L<<1 is well satisfied.
For the w=10 leg ladder the distribution of the 6, values for
various lengths are shown in Fig. 2, which are obtained for
10* realizations for each cases. As seen in this figure the
width of the distribution is decreasing with increasing L and
there is only a weak shift of the position of the maximum.
The distributions somewhat deviate from Gaussians, they are
asymmetric, as can be seen in the log-lin plot in the inset of
Fig. 2. With increasing L, however, the skewness of the dis-
tribution is decreasing, which is in agreement with the ex-
pectation, that in the w/L—0 limit we get back the corre-
sponding results for chains.

3. “True” critical points for ladders

For a fixed value of the number of legs, w, we have cal-
culated the mean value of the pseudocritical points. We have
observed that the L-dependence of 6,.(w,L) becomes weaker
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TABLE 1. Quantum critical points of ladders of the random
transverse-field Ising model, 6., and the asymptotic prefactor of the
standard deviation in Eq. (17), a, for different number of legs.

w 6. a
1 0.00021(30) 1.413(8)
2 0.64418(15) 0.997(1)
3 0.94736(10) 0.925(5)
4 1.08059(15) 0.881(2)
5 1.16859(10) 0.844(5)
6 1.23207(15) 0.815(5)
7 1.27962(15) 0.807(4)
8 1.31727(20) 0.781(3)
9 1.34787(10) 0.763(3)
10 1.37270(15) 0.733(2)
11 1.39399(20) 0.728(5)
12 1.41211(10) 0.709(3)
13 1.42778(10) 0.696(2)
14 1.44165(20) 0.681(4)
15 1.45397(10) 0.669(4)
16 1.46472(15) 0.658(4)
17 1.47445(10) 0.650(4)
18 1.48332(10) 0.640(1)
19 1.49095(30) 0.626(4)
20 1.49855(15) 0.620(2)

and weaker with increasing L, which is in agreement with the
fact, that the system approaches more and more the chain
geometry. Due to this one can obtain accurate estimates in
the thermodynamic limit for the “true” critical points of lad-
ders, which are listed in Table I for different number of legs.
Here, the errors are merely due to disorder fluctuations since
for L=192 the finite length effects are negligible.

Here, we also list our estimate for the chain, w=1, which
agrees within the error of the calculation with the exact re-
sult: 6.(1)=0 and a(1)=\5 (see Sec. III C 4).

These data approach the critical point in the 2d system,
0.(2d), see Fig. 3. Here the corrections for large- w are ex-
pected to have a power-law form, and analogously to Eq. (1),
it contains the shift exponent, v, of the 2d system.

Estimates for the effective (w dependent) values of the
shift exponent are obtained from the ratio of the second and
the first finite differences:

L _ AZGC(W) _
)~ A 00m" (14)

which are calculated at the central point of five-point fits.
The effective exponents are given in the upper inset of Fig.
3, which are extrapolated®? as 1/v,(2d)=0.81(10), thus we
obtain:

v,(2d) = 1.24(15). (15)
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FIG. 3. (Color online) Critical points of the ladders for varying
number of legs, w, and the extrapolation curve [broken (green) line]
for large w. Upper inset: estimates of the inverse of the local shift
exponent, 1/v4(w), calculated through Eq. (14). The broken (green)
straight line indicates the extrapolation through 1/w. Lower inset:
ratio of the scaled difference of the critical points and the scaled
standard deviations as a function of 1/w (see text). The horizontal
broken (green) line at rs=1. indicates a value which is close to the
expected asymptotic behavior.

4. Scaling of the width of the distribution

We have measured the standard deviation of the distribu-
tion of the pseudocritical points, A6 .(w,L), for ladders with
w legs and with a varying length, L. This quantity is expected
to scale with the length as:

A6 (w,L) = LD (w/L), (16)

where the scaling function, o(y), behaves for small argu-
ments as: o(y) ~y~V/w@D+1n,(d) Erom this follows, that for
finite widths we have:

A (w,L) =L Da(w), (17)

with a prefactor, a(w), which behaves for large w as a(w)
~w*, with an exponent e=—1/v,,(2d)+1/v,(1d). We have
checked this scenario by analyzing the data for Af.(w,L).
First, for a fixed w we have fitted a function a(w)L™®, with a
free parameter, w. We have found that for each widths, 1
=w=20, the exponent w agrees with 1/v,,(1d)=0.5, within
a few thousands of error, as illustrated in Fig. 4.

In the next step we have fixed the value of w=0.5 and
estimated the limiting value of A@.(w,L)L% for large L,
which is denoted by a(w). These limiting values are pre-
sented in Table I, which are analyzed for large w. As seen in
the upper inset of Fig. 4 in a log-log plot the a(w) values are
asymptotically on a straight line. We have calculated effec-
tive, w-dependent exponents: e(w)=log[a(w)/a(w/2)]/
log 2, which are presented in the lower inset of Fig. 4 as a
function of 1/w. These effective exponents have a weak
w-dependence and we estimate its limiting value as e=
—0.30(5). With this we have for the width exponent in 2d:

v, (2d) =1.25(8). (18)

Closing this section we try to decide in a direct way about
the relation between the two exponents, v,(2d) and v,,(2d).
For this we form the scaled difference: d6.(w)=A,6.(w)w
[see Eq. (14)], which scales as w™"%, as well as the scaled
standard deviation: sa(w)=w"%a(w), which scales as w™!/"»,

PHYSICAL REVIEW B 80, 214416 (2009)

0.1

A8,

0.01F

10 100 1000

FIG. 4. (Color online) Scaling of the width of the distribution of
the pseudo-critical points, Af,(w,L), with L for different number of
legs, w. In a log-log plot the slope of the curves are compatible with
the theoretical prediction, v,,(1d)=1/2, which is indicated by a full
straight line. In the upper inset the limiting value of the prefactor,
a(w) is shown as a function of w in a log-log plot. The dashed
(green) straight line has an intersection, €=0.30, as extrapolated
from effective exponents in the lower inset.

and form their ratio, rs(w)=d6.(w)/sa(w). As seen in the
lower inset of Fig. 3 this ratio approaches a finite value
which can be estimated as rs=1.01(4). Thus we can con-
clude that at the infinite disorder fixed point of the 2d ran-
dom transverse-field Ising model the shift and the width ex-
ponents are equal and they correspond to the correlation
length exponent of the model.

Using the best estimate for v(2d)=v,,(2d) and including
the first analytic correction to scaling term: 6,=6,(w)
—Aw™""(1+B/w) we fit our data (see Fig. 3) and obtain for
the critical point of the 2d system:

0.(2d) = 1.676(5). (19)

This value is in agreement with the previous estimate,
6,.(2d)=1.680(5), in Ref. 27.

IV. SCALING AT THE CRITICAL POINT

Having estimates for the critical points of random ladders
with w legs, 6.(w), we have calculated scaling of the mag-
netization at the critical point as well as the critical dynami-
cal scaling. These calculations are made for lengths up to 2'2
and for 4 X 10* realizations.

A. Magnetization

We have calculated the average total magnetic moment at
the critical point, u.(w,L), for varying lengths, L, which is
expected to scale as:

pew,L) = LD g (wiL), (20)

with a scaling function, which behaves for small arguments
as: L, (y) ~ y4r@d)-d1d) Then, for a finite width, w, we have:

pre(w,L) = LA Db(w), (1)

with a prefactor, which for large w behaves as: b(w) ~w*,
with k=d(2d)-d,(1d).
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10*

FIG. 5. (Color online) Scaling of the average total magnetic
moment at the critical point of a ladder with w legs and length L,
u.(w,L). In the log-log plot the slope of the curves are compatible
with the theoretical prediction, d/{1d) in Eq. (10), which is indi-
cated by a full straight line. In the lower inset the limiting value of
the prefactor, b(w) is shown as a function of w in a log-log plot. The
dashed (green) straight line has an intersection, xk=0.195, as ex-
trapolated from effective exponents in the upper inset.

The scaling Ansatz in Eq. (21) is checked in Fig. 5. Then,
we have calculated the limiting value of L‘df(ld),uc(w,L),
which is denoted by b(w) and which is presented as a func-
tion of w in a log-log plot in the lower inset of Fig. 5. Ef-
fective, w-dependent exponents are calculated, which are ex-
trapolated in the upper inset of Fig. 5 giving x=0.195(15).
Thus, the fractal dimension in 2d is d/{(2d)=d/1d)+« and
from Eq. (10) we obtain for the magnetization scaling di-
mension:

x(2d) =0.996(15). (22)

B. Dynamical scaling

At an infinite disorder fixed point there is a special form
of dynamical scaling, as given in Eq. (4). The energy scale of
a sample at the end of the renormalization can be defined
either by the value of the last decimated (log) coupling

—log J=\ or by the last decimated (log) transverse-field

—log h= v. The distribution of N as well as y are shown in
Fig. 6 in upper and in the lower panel, respectively, for the
w=10-leg ladder for various values of the length, L. An ap-
propriate scaling collapse of the date is observed in terms of
the scaling variables, AL and yL™Y, with /= y(1d)=1/2, as
illustrated in the insets.

In order to have a more quantitative picture about dy-
namical scaling, we consider the mean value: I'(w,L)
=[¢(w,L)],, and the standard deviation, AI'(w,L) and simi-
larly, A(w,L)=[\(w,L)],, and AA(w,L). All these quantities
are expected to scale in the same way, for example with
I'(w,L) we have:

I(w,L) = L"*'T(w/L), (23)
with T(y) ~ y#2)-4¥(1d) Eor 3 finite width, w, we have then:
T(w,L) = L"g(w), (24)

with g(w)~w? for large w with 8= y(2d)—y(1d).
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FIG. 6. (Color online) Distribution of the last decimated log-
coupling, X, (upper panel) and the last decimated log-transverse
field, y (lower panel) for various lengths, L, for the w=10-leg lad-
der. In the insets the distribution of the scaled variables: AL™% and
yL=93_ respectively, are shown.

We have checked that the scaling form in Eq. (24) is
indeed satisfied for all values of 1 =w =20 and than calcu-
lated the limiting value of I'(w,L)L™", which is denoted by
g(w). As illustrated in Fig. 7 the scaling functions of the
typical energy scales have only a very weak w dependence,
and we estimate (not shown) a small exponent: 5=0.01(3).
Thus, we have for the i exponent in the 2d model:

#2d) = 0.51(3). (25)

V. ENTANGLEMENT ENTROPY

In the ladder geometry we consider a block, .4, which
contains all the w legs and has a length, € <L. Consequently

25 . : ‘
+++++++++++++++
N
2b l
* r -+
AT %
A *
15} i
AA o
o
17 X X X X X X -
x
**XXXX%XX%***X%*X
x *
0.5 i
DDDDDDDDDDDDDDDDDDD
0 ! ! . )
5 10 15 20
w

FIG. 7. (Color online) Scaling functions for typical energy
scales: g(w)=lim; .., G(w,L)L™"2, in which G(w,L) is either
I'(w,L), AT'(w,L), A(w,L) or AA(w,L), see text.
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FIG. 8. (Color online) Structure of the decimated spin clusters at
the critical point of a ladder of 20 X 128 sites, which is devided into
two equal blocks the boundary of which is indicated by thick ver-
tical lines. There are three clusters, denoted by blue, red and green
colors, respectively, which contain sites at both blocks and thus
result in an entropy 3 Xlog 2.

the block has two parallel lines of width, w, at which it has
contact with the rest of the system, B. The entanglement of
A with B is quantified by the von Neumann entropy:>*

Saw,€) ==Try(palog pa), (26)

in terms of the reduced density matrix: p4=Trg V)V,
where |W) denotes a pure state (in our case the ground state)
of the complete system.

In a many-body system, the calculation of the entangle-
ment entropy necessities the determination of the reduced
density matrix, which is generally a difficult numerical task,
which in 1d (and quasi-1d) systems can be performed by the
density matrix renormalization (DMRG) procedure.®® In this
respect the calculation of the asymptotic behavior of the en-
tropy for a critical random quantum system is simpler, if the
strong disorder renormalization group technique can be used.
For the critical random transverse-field Ising model the en-
tanglement entropy is calculated by the strong disorder
renormalization group technique in 14 in Ref. 25 and in 2d
in Refs. 26 and 27. The basic observation of the method, that
entanglement between the two parts of the system, 4 and B,
are given by such renormalized spin clusters, which contain
sites both in A and in B, and the cluster is eliminated at some
point of the renormalization. Due to the very broad distribu-
tion of the effective couplings and transverse fields, the clus-
ter at the energy scale of its decimation is in a so called GHZ
entangled state of the form: 1/2(|T7...1)+|/ | ...])). Each
such cluster contribute by an amount of log 2 to the entangle-
ment entropy, thus, calculation of the entropy is equivalent to
a cluster counting problem, which is illustrated in Fig. 8.

In the chain geometry the asymptotic behavior of the en-
tropy at the critical point is obtained from the analytical so-

lution of the RG equations as:*’
1
SA(1,€)~¥10g€+k(l), (27)

where k(1) is a nonuniversal constant, which depends on the
form of the disorder, whereas the prefactor of the logarithm,
¢(1), which is also called as the effective central charge, is
universal and given by: ¢(1)=In 2/2. This result is checked
numerically in Ref. 34. In the two-dimensional case, which
is expected to hold for w/L=0(1), there are somewhat con-
flicting numerical results at the critical point. Lin et al.?
have observed a double-logarithmic multiplicative factor to
the area law: S 4(€,€) = € log log € whereas later Yu et al.”’
argued to have only a subleading logarithmic term to the area
law: S (€,€)=af+b log € +k.
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FIG. 9. (Color online) The log-€-dependence of the entangle-
ment entropy at the critical point of ladders for different number of
legs, w, and for L=4096. The linear part of the curves has approxi-
mately the same slope, which is consistent with In 2/6, as indicated
by a full straight line. Upper inset: the nonuniversal part of the
critical entropy, k(w,€), for the w=10-leg ladder and its extrapola-
tion for €>w (but €{<<L=4096) with a correction term of
~log ¢/€. Lower inset: the asymptotic value of the nonuniversal
part of the critical entropy, k(w), as a function of w. Asymptotically
there is a linear w-dependence, which is shown by a broken (green)
straight line.

Here, we study numerically the critical ladder systems
with various number of legs and try to identify the cross-over
between one and two dimensions. To illustrate the € depen-
dence of the entanglement entropy in Fig. 9 we show S 4 as
a function of log ¢ for different number of legs for L
=4096. (We have checked, that the asymptotic results does
not change for L=2048.) The central parts of the curves are
very well linear having approximately the same slope, which
is consistent with the exact result for the w=1 chain geom-
etry. Thus, we conclude that the effective central charge,
¢(w), does not depend on the number of legs.

In the next step we fix ¢(w)=1In 2/2, calculate the nonuni-
versal term: k(w,€)=SA(w,€)—%log € and take its limit,
k(w), for large ¢ (but still with € <<L). As illustrated in the
upper inset of Fig. 9 the €-dependent correction term is ap-
proximated as log /€ and the asymptotic nonuniversal
terms, k(w), are shown for different number of legs in the
lower inset of Fig. 9. One can see that starting with the chain,
w=1, first k(w) is decreasing, has a minimum around w=3
and then starts to increase. This increase for large w is ap-
proximately linear, we have fitted: k(w)=0.0256(10)w
+0.148(10). This linear increase is compatible with the area
law, which should hold for noncritical systems and for large
blocks. Our analysis can be used to clarify the one- to two-
dimensional cross-over of the entropy in the limit w/€ <1.
However, our data cannot be used to make predictions fur-
ther, for w/L=0(1), i.e., for the two-dimensional case. For
this one should analyze the occurrent and possibly very weak
w dependence of the prefactor of the linear term of k(w),
which however cannot be done with our data, which are only
up to w=20.

VI. DISCUSSION

In this paper, we have studied the critical properties and
the entanglement entropy of random transverse-field Ising
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models in the ladder geometry by the strong disorder renor-
malization group method. In our numerical calculation we
went up to w=20 legs and with a length up to L=4096 for
4% 10* realizations. In principle the sizes of the systems
could have been increased further, but it was not necessary.
With L we have already reached the limit where no further
systematic finite-size effects are seen. On the other hand for
larger values of w we would have obtained too large errors in
calculating quantities, such as through two-point fit.

First, we have calculated sample dependent finite-size
critical points, which are obtained by the doubling procedure
and the strong disorder renormalization group method. We
have analyzed the shift of the mean value of the transition
points and the width of the distribution as a function of the
number of legs, w, and estimated the exponents of the 2d
model, v(2d) and v,,(2d), respectively. These are found to
be identical and given by the correlation-length exponent of
the 2d model. Consequently the scaling behavior of the
pseudocritical points of the 2d random transverse-field Ising
model is in the same form as for classical and conventional
random fixed points.® In this respect there is a difference
with the 1d model,?! in which v,(1d) <, (1d). For this latter
model probably the free-fermionic character could be the
reason for the different scaling properties. Our estimate for
the correlation length exponent, v(2d)=1.25(8), is clearly
larger than the possible limiting value of 2/d, which has
been observed in the 1d model and in some other random
systems.!!

Scaling at the critical point for different quantities is ana-
lyzed in a similar way, what we summarize here as follows.
Let us consider a physical observable, A, which at the criti-
cal point has the mean value, A(w,L). This quantity scales
with the critical exponent of the 2d model, a(2d), as:

Alw,L) ~ L*®A(w/L), (28)

where the scaling function, g(y), for small arguments be-
haves as:

A'(y) — ya(2d)—a(ld) (29)

where a(1d) is the critical exponent in the 1d model. Con-
sequently for a finite w, but for L— e, we have

A(w,L) ~ L*Mq(w) (30)

with a(w) ~w® and w=a(2d)— a(1d). In general we measure
the scaling function a(w) for different widths, estimate the
exponent @ and calculate the critical exponent in 2d as:
a(2d)=a(1d)+w. Since the exponents in 1d are exactly
known and the correction term, w, is comparatively small we
have obtained quite accurate exponents in 2d. In the follow-
ing we compare the estimates for the different critical expo-
nents in the 2d infinite disorder fixed point, which are listed
in Table II.

Here, besides different numerical strong disorder renor-
malization group results there are also Monte Carlo simula-
tions, both for the random transverse-field Ising model and
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TABLE II. Numerical estimates of the critical exponents at the
infinite disorder fixed point in 2d. MC: Monte Carlo simulation;
SDRG: numerical strong disorder renormalization group; CP:
Monte Carlo simulation of the 2d random contact process. The
exponents, ¢, denoted by an asterisk are calculated from the scaling
relation in Eq. (10).

17 ¢ v X Method
0.4(1) 2.5% 1.0 MC?
0.42(6)  2.5(4) 1.07(15) 1.0(1) SDRG"
0.5 2 0.94 SDRG¢
0.6 1.7 1.25 0.97 SDRG!
0.51(6)  2.04(28)*  1.20(15)  0.96(2) Cp*
0.513)  1.97(15)*  1.25(8) 0.996(15)  This work

4Reference 17.
PReference 18.
“Reference 19.
dReference 20.
®Reference 23.

for the random contact process. This latter model is expected
to belong to the same universality class,? at least for strong
enough disorder. It is seen in Table II that our estimates fit to
the trend of the previous results and generally have a some-
what smaller error.

We have also studied the scaling behavior of the entangle-
ment entropy in the ladder geometry. For a fixed width, w,
the entropy is found to grow logarithmically with the length
of the block, €, and the prefactor is found independent of w.
On the other hand the € independent term of the entropy is
found to have a linear w dependence, at least for large
enough w, which corresponds to the area law for this sys-
tems.

The investigations presented in this work can be naturally
continued for larger and larger widths and approaching the
case, w/L=0(1), which corresponds to the two-dimensional
model. However, with increasing w the numerical computa-
tion becomes more and more costly. The reason for this is the
fact that the connected clusters in the strong disorder renor-
malization group method are typically of size w X w, which
for large w becomes fully connected after decimating a small
percent of the transverse fields. The number of further renor-
malization steps grows in a naive approach as w®, so that by
this method one cannot go further than L~ 100 or 200 in 2d.
To treat larger 2d systems improved algorithms are neces-
sary. Studies in this direction are in progress.
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